Pigmentation and Spectral Absorbance Signatures in Deep-Water Corals from the Trondheimsfjord, Norway
نویسندگان
چکیده
The pigmentation and corresponding in vivo and in vitro absorption characteristics in three different deep-water coral species: white and orange Lophelia pertusa, Paragorgia arborea and Primnoa resedaeformis, collected from the Trondheimsfjord are described. Pigments were isolated and characterized by High-Performance Liquid Chromatography (HPLC) analysis and High-Performance Liquid Chromatography Time-Of-Flight Mass Spectrometer (LC-TOF MS). The main carotenoids identified for all three coral species were astaxanthin and a canthaxanthin-like carotenoid. Soft tissue and skeleton of orange L. pertusa contained 2 times more astaxanthin g(-1) wet weight compared to white L. pertusa. White and orange L. pertusa were characterized with in vivo absorbance peaks at 409 and 473 nm, respectively. In vivo absorbance maxima for P. arborea and P. resedaeformis was typically at 475 nm. The shapes of the absorbance spectra (400-700 nm) were species-specific, indicated by in vivo, in vitro and the corresponding difference spectra. The results may provide important chemotaxonomic information for pigment when bonded to their proteins in vivo, bio-prospecting, and for in situ identification, mapping and monitoring of corals.
منابع مشابه
Tissue-associated "Candidatus Mycoplasma corallicola" and filamentous bacteria on the cold-water coral Lophelia pertusa (Scleractinia).
The cold-water coral Lophelia pertusa (Scleractinia, Caryophylliidae) is a key species in the formation of cold-water reefs, which are among the most diverse deep-sea ecosystems. It occurs in two color varieties: white and red. Bacterial communities associated with Lophelia have been investigated in recent years, but the role of the associated bacteria remains largely obscure. This study uses c...
متن کاملThe spectral quality of light is a key driver of photosynthesis and photoadaptation in Stylophora pistillata colonies from different depths in the Red Sea.
Depth zonation on coral reefs is largely driven by the amount of downwelling, photosynthetically active radiation (PAR) that is absorbed by the symbiotic algae (zooxanthellae) of corals. The minimum light requirements of zooxanthellae are related to both the total intensity of downwelling PAR and the spectral quality of the light. Here we used Stylophora pistillata colonies collected from shall...
متن کاملA hidden coral destruction
Pressure is growing for protection of some of the least known but most ancient biological systems — deep-water coral reefs — under threat of destruction as trawlers increasingly turn to deep sea fishing with catches in more conventional shallow-water fisheries dwindling dramatically. Deep water corals, as opposed to the well-known shallow water corals of the tropics, occur worldwide and in high...
متن کاملStable Isotope Signatures of Middle Palaeozoic Ahermatypic Rugose Corals – Deciphering Secondary Alteration, Vital Fractionation Effects, and Palaeoecological Implications
This study investigates stable isotope signatures of five species of Silurian and Devonian deep-water, ahermatypic rugose corals, providing new insights into isotopic fractionation effects exhibited by Palaeozoic rugosans, and possible role of diagenetic processes in modifying their original isotopic signals. To minimize the influence of intraskeletal cements on the observed signatures, the ana...
متن کاملInvestigation of the effect of physical parameters of seawater on the health of branched corals in Chabahar Bay
Background and Objectives: ?????? Methods: ?????? Findings: ?????? Conclusion: ????? Coral ecosystems, like other natural habitats, are under effect by global warming. Every year we see the bleaching of corals in different parts of the world. Since the physical parameters of seawater are affected by meteorological phenomena, so in this study using ten-year data of oceanographic buoys, the ...
متن کامل